

Techniques de Compression et Utilisation d'Outils Cryptographiques Web et Mobile

- Compression de données en informatique

TRAVAUX DIRIGES N°1

TD Compression de données en informatique

Exercice 1:

Soit une source qui émet 4 symboles x_1 , x_2 , x_3 , x_4 et 4 codes C_1 , C_2 , C_3 , C_4 tels que :

х	p(x)	\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}_3	C_4
x_1	0.5	0	0	0	0
x_2	0.25	0	1	10	01
x_3	0.125	1	00	110	011
χ_4	0.125	10	11	111	0111

- 1. Rappeler la définition d'un code à décodage unique, d'un code préfixe. Quelle est l'avantage d'avoir un code à préfixe ?
- 2. Parmi ces 4 codes lesquels satisfont la condition de préfixe ? Pourquoi ?
- 3. Parmi ces 4 codes lesquels sont à décodage unique ? Pourquoi ?
- 4. Quel est le plus efficace?

Exercice 2:

Soit une source qui génère des lettres de l'alphabet $A = \{a_1, a_2, a_3, a_4, a_5\}$ avec les probabilités suivantes : $p(a_1) = 0.15$; $p(a_2) = 0.04$; $p(a_3) = 0.26$; $p(a_4) = 0.05$; $p(a_5) = 0.5$.

- 1. Calculer l'entropie de la source
- 2. Construire le code de Fano pour cette source. Calculer l'efficacité du code.
- 3. Construire le code de Huffman pour cette source. Calculer l'efficacité du code.
- 4. Comparer les deux codes ?
- 5. Dans chaque cas n'y-a-t-il qu'une seule manière de construire le code ?

Exercice 3:

On considère le fichier $\mathcal{F} = \{BBDBFDFFDBBDEDCAFABB\}$.

On supposera que la distribution de probabilité des symboles est donnée par la fréquence relative d'apparition du symbole dans le fichier \mathcal{F} .

- 1. Calculez les probabilités des symboles A, B, C, D, E et F.
- 2. Calculez l'entropie H du fichier \mathcal{F} .
- 3. Déterminez l'encodage de Fano des symboles.
- 4. Déterminez l'encodage d'Huffman des symboles.
- 5. Quelle serait la taille minimale d'un fichier \mathcal{F}' , composé de 1000 symboles tirés du même dictionnaire que \mathcal{F} et avec la même distribution de probabilité ?
- 6. Quelle taille permet d'atteindre l'encodage de Fano pour \mathcal{F}' ?
- 7. Quelle taille permet d'atteindre l'encodage de Huffman pour \mathcal{F}' ?

Techniques de Compression et Utilisation d'Outils Cryptographiques Web et Mobile

- Compression de données en informatique

Exercice 4:

On considère l'image ci-dessous, où les valeurs des pixels sont marquées. On considère que chaque pixel est codé sur 1 octet.

10	10	10	10	10
10	90	90	90	90
180	180	180	180	
100	100	100	100	10
15	15	15	15	15

- 1. Quelle est la taille de l'image en nombre de bits.
- 2. Donner le codage de RLE et codage de Huffman.
- 3. Calculer la taille de l'image après chaque codage.
- 4. Quel est le taux de compression de chaque codage ?
- 5. En déduire le de gain compression de chaque codage.

Exercice 5:

- 1. Soit le message suivant : "ABCACABC" à encoder en LZW avec un dictionnaire initial réduit aux 5 premières lettres : dico[0] = 'A', dico[1] = 'B', dico[2] = 'C', dico[3] = 'D', dico[4] = 'E'.
 - a. Coder le message initial en remplissant le tableau ci-dessous :

étape	préc. au début du TQ	caractère lu : c	séquence	dans dico?	décision	dico	code	préc. final
-------	----------------------------	---------------------	----------	---------------	----------	------	------	----------------

b. Décompresser cette séquence binaire en complétant le tableau ci-dessous.

étape	précédente	taille du dico => nbits	code	courante après test	С	nouvelle et dico
1	vide	5 entrées => code 3 bits	0/3	Α	Α	vide+A, dico[0] = A